
More with Pictures and Loops

In the previous section, we saw that we can use a for loop to access every pixel in a
picture and then do something to it. In many applications, we don’t need to access
each of the pixels, but rather would like to do something to just a few select pixels.
Removing the redeye from a picture would be a perfect example of this. In this case,
we would only need to change the color of the pixels in a small region of the picture.
To do this in Python, we are going to use the range function to get a list of numbers
that we will use to get the coordinates of the pixels we want to modify.

There are three ways to use the range function in Python – with one, two, or three
parameters. Let’s look at examples to show how these different versions of range

work.

Example 1: The range function

1-parameter range:

𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(3))
[0, 1, 2]
𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

2-parameter range:
𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(1,4))
[1, 2, 3]
𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(8, 15))
[8, 9, 10, 11, 12, 13, 14]

3-parameter range:
𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(1, 6, 2))
[1, 3, 5]
𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(0, 10, 2))
[0, 2, 4, 6, 8]
𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(1, 20, 3))
[1, 4, 7, 10, 13, 16, 19]
𝑝𝑟𝑖𝑛𝑡(𝑟𝑎𝑛𝑔𝑒(10, 0, −1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

The 1-parameter range function returns a list of integers that starts at 0 and goes
up to the value that was input, but does not include it. The 2-parameter range
function returns a list of integers that starts at the first number indicated and goes
up to, but does not include, the second number. The 3-parameter range function
works similarly to the 2-parameter range function, except that the third parameter
specifies what the step is (i.e., what to count by). Notice that in the last example of

the 3-parameter range function, the range starts at 10 and goes down to 0. The
step is negative to make the count go backwards.

The following function to calculate the sum of the first n integers uses the range
function to give a list of numbers to be used in a loop:

Example 2: Function to sum first n integers

𝑑𝑒𝑓 𝑠𝑢𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠(𝑛):
 𝑠𝑢𝑚 = 0
 𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(1, 𝑛 + 1):
 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑗
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑢𝑚

How does this work? The variable sum will hold the accumulated total as we go
through the loop; it starts out with the value 0. The first time we go through the
loop, j takes on the value 1. It then gets added to the value in sum (currently 0), and
then the result gets stored back in sum. So sum now has the value 1. The next time
through the loop, j takes on the next value in the list, which is 2. This value gets
added to what is in sum (currently 1), and gets stored back in sum. So sum now has
the value 3. This continues until the last iteration of the loop, when x takes on the
value of n. This gets added to the value in sum, and stored back in sum. The
variable sum then contains the value of 1+2+3+…+n.

Now how can we use this range function to do anything with pictures? The basic

idea is that we will use it in our loop statements to indicate which coordinates of
pixels we would like to modify. Consider the following example that will change the
color of the first 20 pixels in the 5th row of the picture to black.

Example 3: Change some pixels to black

𝑑𝑒𝑓 𝑚𝑎𝑘𝑒𝑆𝑜𝑚𝑒𝐵𝑙𝑎𝑐𝑘(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑀𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙𝑠
 𝑓𝑜𝑟 𝑥 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(20):
 𝑝𝑥 = 𝑔𝑒𝑡𝑃𝑖𝑥𝑒𝑙(𝑛𝑒𝑤𝑃𝑖𝑐𝑡, 𝑥, 5)
 𝑠𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑝𝑥, 𝑏𝑙𝑎𝑐𝑘)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

So how does this work? We begin by copying our original picture so that we work
with a copy, not the original. Then we loop through the first 20 integers (0 through

19). Each time through the loop, we get one pixel, with coordinates (x, 5) and
change the color of that pixel to black. The first time through the loop, we get and
change pixel (0,5). The second time through the loop, we get and change pixel (1, 5).
The next time through the loop, we get and change pixel (2, 5). We continue this
until the last time through the loop, when we get and change pixel (19, 5).

Suppose we wanted to change the entire row to black. We only need to modify the
parameter in the range function of the example so that it ends at the last pixel in
the row (instead of the 20th pixel in the row). If our picture is 640 x 480, the last
pixel in row 5 is (639, 5). We will use the getWidth function to specify what this
should be.

Example 4: Change pixels in row 5 to black

𝑑𝑒𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑤5(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑀𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙𝑠
 𝑓𝑜𝑟 𝑥 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑔𝑒𝑡𝑊𝑖𝑑𝑡ℎ(𝑛𝑒𝑤𝑃𝑖𝑐𝑡)):
 𝑝𝑥 = 𝑔𝑒𝑡𝑃𝑖𝑥𝑒𝑙(𝑛𝑒𝑤𝑃𝑖𝑐𝑡, 𝑥, 5)
 𝑠𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑝𝑥, 𝑏𝑙𝑎𝑐𝑘)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

Notice that the only difference between this example and Example 3 is the
parameter in the range function.

Let’s extend this example so that we now change the color of every pixel in the
picture to black. We could write functions similar to changeRow5 such as
changeRow0, changeRow1, changeRow2, etc. This is really too much work!
Instead of doing this, we will actually use a loop inside of a loop (nested loops). If we
want to change all of the pixels in all of the rows and all of the columns, we will use
one loop to color each row like we did with changeRow5, and then we will next
that loop inside of a loop that lets us go through each of the rows. The code would
look like the following:

Example 5: Color all pixels using nested loops

𝑑𝑒𝑓 𝑐𝑜𝑙𝑜𝑟𝐴𝑙𝑙𝐵𝑙𝑎𝑐𝑘(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑀𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙𝑠
 𝑓𝑜𝑟 𝑦 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡(𝑛𝑒𝑤𝑃𝑖𝑐𝑡)):

 𝑓𝑜𝑟 𝑥 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑔𝑒𝑡𝑊𝑖𝑑𝑡ℎ(𝑛𝑒𝑤𝑃𝑖𝑐𝑡)):
 𝑝𝑥 = 𝑔𝑒𝑡𝑃𝑖𝑥𝑒𝑙(𝑛𝑒𝑤𝑃𝑖𝑐𝑡, 𝑥, 5)
 𝑠𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑝𝑥, 𝑏𝑙𝑎𝑐𝑘)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

How does this work? For each value of y in the list [0, …, h-1] (where h is the height
of the picture), we go through the entire loop for x. So y starts at 0. Then x starts at
0 and we modify pixel (0, 0). Then y stays at 0 and x becomes 1. We then modify
pixel (1, 0). We modify all of the pixels (2, 0), (3, 0), …, (w-1, 0) before y changes
value. After we modify pixel (w-1, 0), y becomes 1, and we modify pixel (0, 1). We
then modify all the pixels (1, 1), (2, 1), (3, 1), …(w-1, 1). Then y will become 2 and
we will modify pixels (0, 2), (1, 2), (2, 2), (3, 2), …etc. We continue this until y
becomes h-1 and we modify the pixels in the bottom row of the picture: (0, h-1), (1,
h-1), (2, h-1), …, (w-1, h-1). The value of y tells us which row we are working with,
and the values of x let us move right across the picture.

We should now practice these ideas of using the range function to get coordinates of
pixels to modify by working through the next mini-lab.

Mini-Lab: More practice with for loops for manipulating pixels in a picture

http://www.cs.kzoo.edu/cs107/Labs/LoopPracticeML.shtml
http://www.cs.kzoo.edu/cs107/Labs/LoopPracticeML.shtml

